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Understanding the structural organization of eukaryotic
chromatin and its control of gene expression represents one of
the most fundamental and open challenges in modern biology.
Recent experimental advances have revealed important charac-
teristics of chromatin in response to changes in external condi-
tions and histone composition, such as the conformational com-
plexity of linker DNA and histone tail domains upon compact
folding of the fiber. In addition, modeling studies based on high-
resolution nucleosome models have helped explain the confor-
mational features of chromatin structural elements and their
interactions in terms of chromatin fiber models. This minire-
view discusses recent progress and evidence supporting struc-
tural heterogeneity in chromatin fibers, reconciling apparently
contradictory fiber models.

The 3 billion DNA base pairs of the human genome are
densely packed within eukaryotic chromatin, a nucleoprotein
complex in which the DNA is wrapped around nucleosomes
(see Fig. 1). Nucleosomes and higher order chromatin struc-
tures serve essential cellular functions, including condensation
of meters-long genomic DNA by several orders of magnitude to
enable its packaging into the micrometer-sized cell nucleus and
regulation of DNA-directed processes, such as transcription,
replication, recombination, and repair through local and
dynamic unfolding of chromatin.

Whether the higher order structure of nuclear chromatin is
organized into a hierarchy of folding states (1) or non-hierar-
chical fractal geometry (2), previous landmark studies estab-
lished the nucleosome as the repeating unit of chromatin (Figs.
1 and 2) (3). This basic unit consists of ~200 bp of DNA, 147 bp
of which are wound around the outside of a spool composed of
core histones (two each of histones H2A, H2B, H3, and H4) to
form the nucleosome core; the remainder (linker DNA) joins
adjacent nucleosomes. At low salt, arrays of nucleosomes adopt
an extended “beads-on-a-string” conformation (Fig. 1). In vitro,
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nucleosome arrays in solutions of physiological ionic strength
form a compact higher order structure called the 30-nm dia-
meter chromatin fiber. Determination of the detailed architec-
ture of the chromatin fiber has occupied experimental and the-
oretical scientists for decades (4 —8).

In this minireview, we discuss recent progress in experimental
analysis of chromatin folding, as well as specific molecular inter-
actions and forces stabilizing compact chromatin. We include
recent modeling studies that, consistent with experimental data,
reveal a structural stability of internally heterogeneous chromatin
fibers. These collective experimental and modeling approaches
appear to reconcile contradictory chromatin fiber models by relat-
ing variable chromatin organization to functional roles.

Experimental Foundations
Nucleosome Core Structure

The nucleosome core can be reconstituted from ~147-bp
DNA fragments and histone octamers. Such particles have been
crystallized and studied by x-ray diffraction (Fig. 3) (e.g. Refs.
9-14), revealing fine detail and differences from free DNA and
providing solid anchors for modeling studies.

Each histone contains a well ordered domain responsible for
the primary wrapping of DNA and tail regions, which make
important points of contact between the protein and the DNA
(see hypothetical model in Fig. 2). Specifically, an underwinding
(10.2 versus ~10. 5 bp/turn) of the nucleosome-bound DNA
superhelix lines up neighboring DNA grooves to form a chan-
nel through which the H3 and H2B N-terminal tail domains
pass. The tails likely play key roles in regulating biological pro-
cesses, such as transcription, that require a conformational
change in higher order chromatin structures. Unfortunately,
the tail domains are typically poorly ordered in crystal struc-
tures of nucleosome cores due to the high salt concentrations
required for crystallization. Because of this structural uncer-
tainty (15), for modeling purposes, these domains are typically
approximated as flexible polymers.

Solution studies revealed that the nucleosome core structure
is highly dynamic and undergoes spontaneous and reversible
unwrapping of DNA segments from the histone surface (16,
17); this flexibility provides accessibility and opportunity for
interactions with DNA-binding proteins. In addition, it should
be noted that inclusion of histone variants, e.g. centromeric
histone H3 variant CENP-A (centromere protein A) (18, 19),
may significantly alter both the extent and stability of nucleo-
some DNA wrapping.

Nucleosome Array Folding in Vitro: The 30-nm Fiber

Nucleosome arrays are characterized by variable linker DNA
lengths ranging from 10 to 90 bp. Thus, the nucleosome repeat
lengths (NRLs)? vary from the shortest 155-bp NRL in fission
yeast (20) to the longest NRL in echinoderm sperm (~240 bp)
(21). As mentioned above, arrays are further compacted in

2 The abbreviations used are: NRL, nucleosome repeat length; LH, linker his-
tone; PTM, post-translational modification.
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FIGURE 1. Schematic view of the many levels of DNA folding in the cell.
On length scales much smaller than the persistence length (p,), DNA can be
considered straight. In eukaryotic cells, DNA wraps around a core of histone
proteins to form the chromatin fiber. The fiber is shown in both the extended
view and a hypothetical compact zigzag view (the “30-nm fiber”) deduced
from a modeling study (29). Chromosomes are made up of a dense chromatin
fiber, shown here in the metaphase stage. For reference, we highlight in pink
in all the DNA/protein views the hierarchical organizational unit preceding it.
The length scale on the right indicates the level of compaction involved.

FIGURE 2. Detailed view of the heteromorphic chromatin model shown in
Fig. 1, with rendering of the core histone tails to show the complex inter-
and intranucleosome interactions. The first five nucleosomes are marked
to indicate the different interaction types. Histone tails are colored yellow
(H2A), red (H2B), blue (H3), and green (H4).

higher order chromosomal structures. In vitro, nucleosome
arrays form a compact 30-nm chromatin fiber, whose exact
structure (e.g solenoid, zigzag, superbead, and others) has long
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Nucleosome core particle containing
a poly(dA-dT) element (2FJ7)

Tetranucleosome (1ZBB)
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FIGURE 3. Examples of crystal structures for the tetranucleosome and
nucleosomes. Shown are the tetranucleosome complex (25), a nucleosome
core particle containing a poly(dA-dT) tract (red) (12), and a human centro-
meric nucleosome containing the centromere-specific histone H3 variant
CENP-A (18). In single nucleosome particles, the histone proteins are colored
by type (i.e. H3, purple; H4, silver; H2A, orange; H2B, blue). Arrows point to
residues present in CENP-A but not in the canonical H3 histone.

been debated (Figs. 4 and 5) (3). Part of this structural uncer-
tainty is due to variability in the native nucleosome arrays stud-
ied. A recent advance in understanding the internal organiza-
tion of the chromatin fiber occurred with the construction of
polynucleosome templates for precise positioning of histone
octamers, initially from repeats of 5 S ribosomal DNA (22) and
later from clone 601 DNA selected from random synthetic
DNA sequences (23). Note that the strong positional sequences
may create structural artifacts, so any generalizable conclusions
require independent confirmation with native chromatin.

Studies using 601 repeats have provided structural insights
for oligonucleosomes with relatively short NRLs (167 and 177
bp) folded in the presence of divalent cations. For example, in
cross-linking studies using arrays of 601 nucleosomes with 177-bp
repeats, Richmond and co-workers (24) produced compelling evi-
dence for a zigzag model in which nucleosome i is closest in space
to nucleosomes i*2 (see contact patterns in Fig. 5, A—C). Zigzag
folding was also evident in a subsequent crystallographic study of a
tetranucleosome (25) with a 167-bp NRL.

However, Rhodes and co-workers (26, 27) produced strong
evidence for the earlier interdigitated solenoid model (28) using
electron microscopy of chromatin fibers reconstituted with
longer NRLs (>177 bp) and with linker histone (LH) and diva-
lent ions. More recently, cross-linking experiments combined
with modeling have demonstrated an internal heterogeneity of
compact 30-nm fibers (29). In particular, divalent ions appear
to promote some bending of the linker DNAs, so compact
structures for the chromatin fiber arise that combine mostly
straight-linker (zigzag-like) fibers with a small percentage of
bent linkers (Fig. 5C). Thus, bent-linker DNAs caused by diva-
lent ions lead to a heteromorphic fiber form that combines
features of both zigzag and solenoid models.
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FIGURE 4. Representative studies of chromatin structure providing foundations for the mesoscopic model of the 30-nm fiber. The models were selected
among the many relevant works and are thus representative rather than complete. AFM, atomic force microscopy; SMFS, single-molecule force spectroscopy.

The heterogeneous nature of the 30-nm fiber is consistent
with earlier electron microscopy (30) and atomic force micros-
copy (31) imaging. Other evidence for an irregular zigzag struc-
ture was provided by single-molecule experiments combined
with a low-resolution model to interpret force/extension
curves from pulling experiments by optical tweezers (32). How-
ever, recent single-molecule force microscopy studies (33) sub-
jecting 25-nucleosome arrays with two linker lengths (NRLs of
167 and 197 bp) to forces up to 4 piconewtons suggested a
fundamental one-start solenoid organization for the longer
array. Clearly, many chromatin configurations are viable in
ambient conditions. In fact, this multiplicity of conformations
can be explained by the sensitivity of fiber architecture to a large
number of internal and external factors (LH, NRL, ionic condi-
tions, and variations in NRL from one core to the next; see next
section). Indeed, such a dependence makes the chromatin fiber
infinitely interesting and suitable for performing a rich array of
functions in the cell.

Molecular Interactions and Factors Stabilizing Compact
Chromatin

LHs Define the Path of Linker DNA—LHs play a crucial role in
compacting 30-nm fibers (34, 35) by shielding the negatively

SN
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charged linker DNA and thereby allowing close apposition of
these segments in the folded fiber. Typical LHs have a tripartite
structure, with extended positively charged C- and N-terminal
domains protruding from a central globular domain. Mapping
with micrococcal nuclease (29) or hydroxyl radicals (36) provided
strong evidence for positioning of LH at the dyad axis with sym-
metric protection of ~11 bp of each linker DNA. This symmetry
and the ability of the globular domain alone to bring two linker
DNA segments in close juxtaposition to form linker DNA stem
motifs are consistent with energy-minimized models (37, 38).
Although the C- and N-terminal domains of LH are disor-
dered in solution, modeling suggests that folding of the C ter-
minus upon contacting the nucleosome contributes to the
linker stem formation. On the basis of a striking homology
between the C-terminal domain of LH and the HMG box fold
motif, Bharath et al. (39) predicted that the folded C-terminal
domain could induce formation of linker DNA stems by kink-
ing inward and then diverging at the C-terminal domain. More
recent analysis of experimental data and modeling studies have
provided a nanoscale model of the LH-induced stem structure
(38). Condensation consistent with folding of the C-terminal
domain upon H1 binding to the nucleosome was recently con-
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FIGURE 5. Chromatin organization: ideal and deduced models for relaxed chromatin and stretched chromatin fibers. A-C, solenoid, zigzag, and heter-
omorphic models, respectively. A, ideal model (parallel and perpendicular views) for a 48-core 209-bp one-start solenoid fiber with six nucleosomes/turn in
which DNA linkers (DNA segments shown in red connecting nucleosomes) are bent and neighboring nucleosomes (i1 interactions (int.)) are in the closest
contact. B, ideal two-start zigzag model (parallel and perpendicular views) for a 48-core 209-bp fiber in which DNA linkers are straight and i=2 nucleosomes are
in the closest contact. C, heteromorphic architecture predicted by modeling and Monte Carlo simulations of 48-core 209-bp arrays with LH at room temper-
ature (293 K), 0.15 m NaCl, and low concentration of magnesium ions and confirmed by cross-linking experiments (29). DNA linkers are shown in red, alternate
nucleosomes are shown in white and blue, and LHs are shown as turquoise spheres. The view parallel to the fiber axis (left) and two enlarged nucleosome triplets
are shown. Both straight and bent DNA linkers occur. In all views, connecting DNA linkers and DNA wrapped around the nucleosomes are colored in red; odd
and even nucleosomes are white and blue, respectively; and LHs are shown in turquoise. The close-ups of trinucleosomes show both intra- and internucleosome
interactions. The core histone tails are colored yellow (H2A), red (H2B), blue (H3), and green (H4). D, effect of NRL (173,209, and 218 bp) and LH on the structure
of the chromatin fiber as predicted from Monte Carlo simulations of 48-core arrays at 0.15 Mm monovalent ions (72). The center images also show the individual
histone tail beads. Color coding is as described above. E, effect of various dynamic LH binding mechanisms on the chromatin unfolding mechanism for 24-core
209-bp fibers as revealed from stretching simulations mimicking single-molecule pulling experiments at monovalent salt conditions of 0.15 m (43). Panel 1,
resulting force extension curves for fibers with one LH rigidly fixed to each core (blue curve) versus LHs that bind/unbind dynamically (average concentration
of 0.8 LH/core; red curve) with added divalent cations. Dynamic LH binding/unbinding dramatically decreases the fiber stiffness and the forces needed for
unfolding with respect to fibers with fixed LH, improving the agreement with experiments (33) significantly. pN, piconewtons. Panel 2, images representing
unfolding intermediates at different forces along the dynamic LH curve in panel 1. Intermediates reveal “superbead-on-a-string” structures in which compact
clusters coexist with extended fiber regions. Panel 3, effect of fast and slow dynamic LH binding/unbinding during chromatin fiber unfolding without divalent
ions (43). The slow-rebinding LH molecules cause a more dramatic softening effect than a pool of fast-rebinding LH, whereas fast LH rebinding promotes
formation of superbead-on-a-string conformations with compact clusters. Together, fast- and slow-binding LH pools provide facile fiber unfolding through
heteromorphic superbead conformations.

Force (pN)
S

firmed by FRET experiments (40). These results are consistent Thus, LH refines the path of linker DNA within the chroma-
with the LH C-terminal domain behaving as an intrinsically  tin fiber by forming rigid stems that reduce the separation angle
disordered domain (41). of entering/exiting DNA (35, 42). Additionally, LH shields the
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electrostatic repulsion of the linker DNAs and promotes linker
DNA bending. Still, recent single-molecule force studies (33)
suggested a stabilizing rather than structure-determining effect
of LH on higher order chromatin. This difference may reflect
the intrinsic ability of LH to rearrange under the applied force
and thus different organization of static and dynamic chroma-
tin (Fig. 5E) (43).

Histone Tails Bridge Nucleosomes—The N-terminal domains
of all core histones and the C-terminal domain of histone H2A
lack a defined secondary structure when free in solution and are
highly mobile when assembled into nucleosomes (15). These
histone tails are highly positively charged but make only mar-
ginal contributions to individual nucleosome structure. Still,
they are required for formation of higher order chromatin
structures (44, 45), probably due to mediation of internucleo-
some interactions. A possible molecular mechanism of intrinsic
nucleosome core interactions emerged from an x-ray analysis
of nucleosome core crystals where the histone H4 N-terminal
tail from one nucleosome contacts an acidic patch formed by
histones H2A and H2B in a neighboring nucleosome (9). Evi-
dence for H4 tail-H2A interactions was provided by cross-link-
ing studies, suggesting both intra- and inter-array contacts (46,
47).

Recent cross-linking studies demonstrated that the same tail
domains of core histones can alternate between intra- and
inter-array interactions (47—49); we designate these as cis- and
trans-interactions, respectively (see hypothetical model in Fig.
2). The inclusion of core histone variants (50) or mutations
(51) altering the histone octamer surface can dispatch inter-
nucleosome interactions toward either cis-interactions and
intra-array folding or trams-interactions and inter-array
oligomerization.

Histone Post-translational Modifications Directly Alter
Nucleosome Interactions and Chromatin Folding—Post-trans-
lational modifications (PTMs) of histone proteins have
emerged as an important mechanism for modulating chroma-
tin structure and function (52, 53). Although many of the his-
tone PTMs affect chromatin structure and function by recruit-
ing additional chromatin-remodeling or architectural factors
consistent with the histone code hypothesis (54), histone acety-
lation and phosphorylation alter the protein charge and chem-
ical properties of the amino acid side group and may directly
affect internucleosome interaction and higher order folding.

For example, acetylation of Lys-16 in histone H4 was suffi-
cient to destabilize salt-dependent folding of a nucleosome
fiber (55). Surprisingly, charge alterations could not reproduce
the action of Lys-16 acetylation; this suggests a highly specific
interaction of the N-terminal domain with the histone octamer
surface (56), perhaps dependent on formation of a-helical sec-
ondary structure by the histone H4 N-terminal tail (57). The
other sites of histone N-terminal tail acetylation can also
directly alter the folding and compaction in chromatin (58) and
apparently act in a less specific manner in both cis- and trans-
interactions (49). These modifications are likely functionally
redundant as demonstrated by mutagenesis in vivo (59) and
histone tail swapping experiments (60). This non-specificity is
consistent with primarily electrostatic interactions of the
N-terminal tails with other histones and DNA (61).
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Besides acetylation, residue substitution experiments in
which histone H4 was trimethylated at Lys-20 and probed by
array sedimentation showed increased compaction of nucleo-
some arrays (11). Although the mechanism is unclear, the posi-
tion of Lys-20 in the histone H4 tail (residues 16 —20) may affect
the internucleosome interaction with a surface of histone H2A.
Moreover, ubiquitylation of histone H2B causes a notable dis-
ruption of a chromatin fiber structure through a mechanism
distinct from histone acetylation (62).

Although the above studies were conducted on nucleosome
arrays devoid of LH, other experiments have shown that his-
tone PTMs can also override LH-stabilized fiber compaction.
For example, citrullination of arginines in histone H3 and H4
N-terminal tails (63) and in vitro acetylation of chromatin fibers
(64) or acetylation mimics within the H4 tail domain (49) over-
ride the strong stimulation of condensation of nucleosome
arrays caused by LHs. Thus, histone acetylation may alter the
secondary structure of the core histone tail domains in a way
that does not simply abolish internucleosome interactions but
actively interferes with other stabilizing chromatin interactions
(65).

Effect of Nucleosome Positioning and NRL on Chromatin
Compaction—Although NRL variations were initially proposed
to alter chromatin fiber diameter proportionally to linker DNA
length (21), more recent ultrastructural studies suggest a step-
wise increase in the chromatin diameter from ~33 nm for chro-
matin with 30— 60-bp linkers to ~42 nm for 70 —-90-bp linkers
(26). The observed structural transitions were explained by top-
ological variations of linker folding from the helical ribbon con-
figuration to a crossed zigzag configuration (66), as well as by
polymorphic chromatin models where the nucleosome linkers
were tangentially oriented in the fiber and did not cross the
fiber axis (67). For short NRLs typical of yeast and neuronal cells
(167 bp), a smaller diameter of ~21 nm with a zigzag morphol-
ogy (68) was obtained, consistent with nucleosome arrange-
ment in the tetranucleosome x-ray crystal structure (25).

Linker length variations were also predicted to have a strong
effect on the chromatin higher order structure via altered inter-
nucleosome orientations (30, 31, 69, 70). However, experiments
on nucleosomes with NRLs varied in a fixed pattern mimicking
natural variations (207 = 2) showed similar folding to uniform
arrays of the same length (29). Consistent with these findings,
modeling work has suggested that whereas short linkers are too
rigid and long linkers are too flexible, medium values (in the
range of 200210 bp) can adopt variable conformations to opti-
mize overall fiber compaction (Figs. 2 and 5D) (71, 72).

Modeling Approaches

Challenges and Approaches—As discussed in a recent mod-
eling and simulation perspective (73), our computing power
and algorithms have improved markedly over the past decade,
rendering problems of greater scientific significance solvable
with enhanced confidence and accuracy. Although all-atom
simulations of nucleic acids have steadily increased in accuracy,
scope, and length (e.g. microsecond simulations of solvated
B-DNA dodecamer (73)), coarse-grained models are required
to simulate macromolecular chromatin systems that are too
large for atomic models and highly dynamic. Creation of such
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models is required to resolve key functional components of the
molecular system while approximating others. Ultimately,
modeling the various folded states of the chromatin fiber
requires multiscale methods to bridge the resolution among
different spatial and temporal scales.

As summarized in Fig. 4 (and in the indicated references),
several groups have developed different models with various
levels of complexity and involving different simulation tech-
niques. In most of these models, nucleosome geometries are
simplified by using a few key variables (e.g nucleosome posi-
tions and charges and angular orientation between the wrapped
and existing/entering DNA), water is treated implicitly, and
configurations are generated by Monte Carlo sampling or via
analytic formulations that sample various parameter ranges.
Model validation is performed using available experimental
data, such as salt-induced compaction of oligonucleosomes to
reproduce experimental sedimentation coefficients and
nucleosome packing ratios, diffusion behavior of oligonucleo-
somes, salt-dependent extension of histone tails measured by
the tail-to-tail diameter of the core and radii of gyration for
mononucleosomes, LH orientations, and internucleosome
interaction patterns (see Ref. 61 for a summary of such model
validation details and available experiments). Overall, such
modeling is particularly useful for probing structural and ener-
getic effects as a function of certain parameters or conditions
like the ionic salt concentration, NRL, and the presence of LHs.
Simulations can also suggest specific configurations to help
interpret single-molecule pulling experiments by associating
specific force versus extension data points with fiber conforma-
tions, as shown in Fig. 5.

Effect of Ionic Conditions, NRL, and LH on Fiber Architec-
ture—As an example of these parameter dependences, Wong et
al. (67) showed the dependence of fiber width on the linker
DNA length and the orientation of LHs. Modeling of simplified
coarse-grained nucleosome models by Rippe and co-workers
(74) reinforced the large effect of the linker length and nucleo-
some twist angles on the extent of fiber compaction. Mesoscale
modeling combined with experimental cross-linking studies
that measured nucleosome interaction patters complemented
by EM visualization (29) revealed a compaction pattern as LH
and divalent ions are added: an open, disordered, zigzag orga-
nization for chromatin fibers without LH rearranges to form
compact zigzag forms with LHs under monovalent ion condi-
tions. With divalent ions, further compaction arises by bending
a small portion of the linker DNAs to form a heteromorphic
architecture (Fig. 5C).

In our model (61, 72), each nucleosome histone octamer
(without protruding tails and with the wound DNA) is treated
as an irregularly shaped electrostatic charged object with point
charges parameterized to reproduce the atomistic electric field.
Each flexible histone tail is modeled as a chain of spherical
beads representing five amino acids each, and LHs are modeled
using three beads representing the C-terminal, N-terminal, and
globular domains (Fig. 5D). The linker DNA connecting the
nucleosomes is treated using the wormlike chain elastic
approximation for DNA. The total energy consists of bending,
stretching, torsion, excluded volume, and electrostatic contri-
butions (43, 61).
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Studies investigating the folding of the chromatin fiber as a
function of NRL, with and without LH, suggested that short-to-
medium NRL fibers (173-209 bp) with LH condense into irreg-
ular zigzag structures and that solenoid features are viable only
for longer NRLs (218 -226 bp) (Fig. 5D) (71, 72). These studies
suggest that medium NRL favors chromatin compaction
throughout the cell cycle, unlike short and long NRL fibers:
short NRL arrays fold into narrow fibers, whereas long NRLs do
not easily lead to high packing ratios due to possible linker DNA
bending. Furthermore, the histone tails influence fibers with
medium NRL more easily. The small compaction effect of LH in
short linker fibers is consistent with experiments (33, 68).

Recent modeling studies that mimic chromatin stretching
experiments have proposed interesting roles for LH in fiber
compaction under various dynamic mechanisms. A wealth of
chromatin pulling experiments as summarized recently (75, 76)
has emphasized the need for further mechanistic and structural
interpretation of the force versus extension curves. For exam-
ple, what factors stiffen the chromatin fiber, and what do the
force versus extension curves imply regarding chromatin struc-
ture? Our studies focused on analyzing the stretching response
of chromatin fibers as a function of the NRL and LH presence,
including various binding mechanisms for LH. Indeed, LHs are
known to be dynamic, with different binding ratios (77, 78).
Because fiber resistance to stretching decreases markedly with
dynamic compared with static LHs due to possible stem rear-
rangements in the former (Fig. 5E, panel I), we have suggested
that dynamic LH binding may be an essential mechanism to
soften chromatin fibers and allow unfolding at typical forces
corresponding to natural molecular motors (Fig. 5E) (43).
Moreover, among the dynamic LHs, pools of fast- and slow-
binding LHs may cooperatively induce fiber unfolding at low
forces: lower binding affinity softens fibers due to stem desta-
bilization, whereas higher binding affinity promotes superbead
constructs that combine nucleosome clusters with stretched
fiber regions. The combination may offer both flexibility and
selective DNA exposure (Fig. 5E) (43). These results thus sug-
gest how modeling can help identify the factors that stiffen or
soften chromatin fibers, as well as propose conformations and
pathways linked to experimental force versus extension curves.
In particular, our conformations are consistent with an overall
zigzag fiber arrangement (Fig. 5E) rather than solenoid inter-
pretation (33).

Tertiary and Higher Order Structures, in Situ Structures,
and Functional Connections

Higher Order Structures beyond the Chromatin Fiber—Fold-
ing of the nucleosome array into the 30-nm fiber is far from
achieving the 5 orders of spatial compaction realized by the
chromosomes near the end of the cell cycle (Fig. 1). Various
looping, scaffolding, wrapping, and specific contacts with other
proteins and possibly RNA have been suggested for this higher
folding to occur.

In vitro, in the presence of divalent cations in excess of 2 mm,
as well as in situ, in interphase eukaryotic cells, chromatin fibers
self-interact to form tertiary chromatin structures (1, 6, 45).
This type of chromatin compaction may account for the in situ
chromatin fibers that are partially interdigitated (79) and in
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vitro chromatin structures with diameters of >30 nm (80, 81).
In vitro, the formation of such structures is promoted by the
same factors as the secondary structure: divalent cations, inter-
actions between core histone N-terminal tails (46, 82), LHs
(83), and heterochromatin architectural factors such as MENT,
MeCP2, and Sir3 (84, 85). Modeling shows that longer nucleo-
some repeats typical of terminally differentiated cells promote
lateral self-association of the chromatin fibers and nucleosome
interdigitation (74).

Various ultrastructural studies, such as cryo-EM tomogra-
phy (79), cryo-EM (86), electron spectroscopic imaging (87),
and small-angle x-ray scattering (88, 89), have not yet provided
a uniform view of chromatin organization in the interphase
state. These techniques revealed 30-nm fibers in a number of
cells with condensed chromatin, such as Echinodermata sperm,
chicken erythrocytes, and mouse retina (79, 88, 90). However,
chromatin in proliferating cells showed thicker (100-nm diam-
eter) “chromonema fibers,” with none or few 30-nm structures
detected (91-93). Even in the most condensed heterochromatic
areas, no regular fibers of 30 nm in diameter were observed in
the nuclei for interphase cells (94), thus raising the possibility
that the 30-nm fiber is not a predominant structure in the inter-
phase nucleus.

Dynamics of Higher Order Chromatin Folding—Although
earlier structural models suggested a hierarchy of highly
ordered static structures for eukaryotic chromatin, recent stud-
ies have revealed chromatin organization to be highly dynamic.
This mobility includes the spontaneous reversible unfolding of
the DNA segments from nucleosomes (16, 17) and oligonucleo-
some arrays (95), the transient association of chromatin archi-
tectural proteins like heterochromatin protein HP1 (96) with
chromatin, and the accessibility of condensed chromatin inside
metaphase chromosomes for extrachromosomal proteins (97).
In particular, as discussed above in connection with Fig. 5E, LH
is highly dynamic, binding to or unbinding from the nucleo-
somes rapidly (78, 98, 99), and LH binding dynamics have been
suggested to affect fiber compaction (100). Modeling has sug-
gested that fast- and slow-binding populations of LH (77)
merge optimally in heterogeneous forms of fibers to make chro-
matin more amenable to molecular motors (Fig. 5E, panel 3)
(43).

The dynamic nature of chromatin necessitates developing
new structural and modeling approaches to capture transient
structural intermediates of chromatin folding in vitro and in
vivo and to relate them to existing nucleosome structures, ener-
getically favorable molecular models, and physical maps and
bioinformatic analyses of native chromatin structures. This
convergence of experiments and modeling will undoubtedly
help translate the linear organization of the nucleosomes and
their interaction in three-dimensional space to the hierarchy of
chromatin and DNA conformations associated with key regu-
latory processes via modulation of chromatin accessibility to
nuclear proteins and mediation of epigenetic interactions.
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